Clinical Medicine Research

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

Combining Multiple Tumor Markers to Construct a Clinical Prediction Model for Breast Cancer

Combining Multiple Tumor Markers to Construct a Clinical Prediction Model for Breast Cancer

Breast Cancer, Machine Learning, FER, CEA, CA153, CY211, Clinical Prediction Model

APA Style

Liu, Z., Lin, L., Zhu, G., Qiu, L. (2024). Combining Multiple Tumor Markers to Construct a Clinical Prediction Model for Breast Cancer. Clinical Medicine Research, 13(1), 6-12.

ACS Style

Liu, Z.; Lin, L.; Zhu, G.; Qiu, L. Combining Multiple Tumor Markers to Construct a Clinical Prediction Model for Breast Cancer. Clin. Med. Res. 2024, 13(1), 6-12. doi: 10.11648/j.cmr.20241301.12

AMA Style

Liu Z, Lin L, Zhu G, Qiu L. Combining Multiple Tumor Markers to Construct a Clinical Prediction Model for Breast Cancer. Clin Med Res. 2024;13(1):6-12. doi: 10.11648/j.cmr.20241301.12

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. The British Journal of Radiology. 2021; 95. doi: 10.1259/bjr.20211033.
2. Di Sibio A, Abriata G, Forman D, Sierra MS. Female breast cancer in Central and South America. Cancer Epidemiol. 2016; 44 Suppl 1: S110-S120. doi: 10.1016/j.canep.2016.08.010.
3. Duffy MJ, et al. Tumor markers in breast cancer: Guidelines for use and interpretation in the clinical setting. European Journal of Cancer. 2005; 41(9): 1343-1357. doi: 10.1016/j.ejca.2005.02.025.
4. K. Pantel, "Abstract PL01-01: Liquid biopsy: Novel technologies and clinical applications", Clinical Research (Excluding Clinical Trials), 2018. DOI: 10.1158/1538-7445. AM2018-PL01-01.
5. M. Zubair, S. Wang, N. Ali, "Advanced Approaches to Breast Cancer Classification and Diagnosis", Frontiers in Pharmacology, 2021. DOI: 10.3389/fphar.2020.632079.
6. Niell BL, Freer PE, Weinfurtner RJ, Arleo EK, Drukteinis JS. Screening for Breast Cancer. Radiol Clin North Am. 2017; 55(6): 1145-1162. doi: 10.1016/j.rcl.2017.06.004.
7. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016; 316(22): 2402-2410. doi: 10.1001/jama.2016.17216.
8. Lakhani P, Prater AB, Hutson RK, et al. Machine Learning in Radiology: Applications Beyond Image Interpretation. J Am Coll Radiol. 2018; 15(2): 350-359. doi: 10.1016/j.jacr.2017.09.044.
9. Savarese TM, Strohsnitter WC, Low HP, et al. Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res. 2007; 9(3): R29. doi: 10.1186/bcr1674.
10. Giovanella L, Ceriani L, Giardina G, et al. Serum cytokeratin fragment 21.1 (CYFRA 21.1) as tumour marker for breast cancer: comparison with carbohydrate antigen 15.3 (CA 15.3) and carcinoembryonic antigen (CEA). Clin Chem Lab Med. 2002; 40(3): 298-303. doi: 10.1515/CCLM.2002.047.
11. Tarighati E, Keivan H, Mahani H. A review of prognostic and predictive biomarkers in breast cancer. Clin Exp Med. 2023; 23(1): 1-16. doi: 10.1007/s10238-021-00781-1.
12. Fadavi P, Nafisi N, Hariri R, et al. Serum Ferritin, Vitamin D and Pathological Factors in Breast Cancer Patients. Med J Islam Repub Iran. 2021; 35: 162. Published 2021 Dec 6. doi: 10.47176/mjiri.35.162.
13. Alkhateeb AA, Han B, Connor JR. Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages. Breast Cancer Res Treat. 2013; 137(3): 733-744. doi: 10.1007/s10549-012-2405-x.
14. Duffy MJ, Shering S, Sherry F, et al. CA 15-3: a prognostic marker in breast cancer. Int J Biol Markers. 2000; 15(4): 330-333. doi: 10.1177/172460080001500410.
15. Wojtacki J, Kruszewski WJ, Sliwińska M, et al. Elevation of serum Ca 15-3 antigen: an early indicator of distant metastasis from breast cancer. Retrospective analysis of 733 cases. Przegl Lek. 2001; 58(6): 498-503.
16. Tampellini M, Berruti A, Bitossi R, et al. Prognostic significance of changes in CA 15-3 serum levels during chemotherapy in metastatic breast cancer patients. Breast Cancer Res Treat. 2006; 98(3): 241-248. doi: 10.1007/s10549-005-9155-y
17. Nakata B, Takashima T, Ogawa Y, et al. Serum CYFRA 21-1 (cytokeratin-19 fragments) is a useful tumour marker for detecting disease relapse and assessing treatment efficacy in breast cancer. Br J Cancer. 2004; 91(5): 873-878. doi: 10.1038/sj.bjc.6602074.
18. Zhou L, Ren Y, Wang X, et al. Efficacy of afatinib in a HER2 amplification-positive endometrioid adenocarcinoma patient- a case report. Onco Targets Ther. 2019; 12: 5305-5309. Published 2019 Jul 4. doi: 10.2147/OTT.S206732.